
Fault-Tolerance for
HPC at Extreme Scale

(FTXS)
An Overview

Nathan DeBardeleben, Resilience Thrust Leader
DoD / Center for Exceptional Computing

Some slides courtesy of John Daly, DoD / CEC

Most images from National Geographic 2009 Photo Contest

Where is HPC headed?
Projections based on the history of HPC performance

From Pete Beckman & Jack Dongarra, http://www.exascale.org

http://www.exascale.org
http://www.exascale.org

A typical DOE Exascale roadmap, but what should
we make of the constant reliability numbers?

Data movement is THE biggest challenge facing
future HPC systems

Usability

Time to Solution

Dependability

Design Space
of the HPC

Application User

Power

Performance

Price

Design Space
of the HPC

Resource Provider

• Performance challenge - 1 Exaflop @ 2 GHz / thread -> ~500 Mthreads

• Power challenge - 1 Exaflop @ 20 MWatts ->20 pJ/op to move data

• Reliability challenge - 1 day MTTI @ 500 Mthreads -> 109 hrs MTTI per thread

It is more than just the increase in the number of
components driving up the fault rate

• Number of components both memory and processors will increase by an order of magnitude which will increase
hard and soft errors

• Smaller circuit sizes, running at lower voltages to reduce power consumption, increases the probability of
switches flipping spontaneously due to thermal and voltage variations as well as radiation, increasing soft errors

• Power management cycling significantly decreases the components lifetimes due to thermal and mechanical
stresses.

• Resistance to add additional HW detection and recovery logic right on the chips to detect silent errors.
Because it will increase power consumption by 15% and increase the chip costs.

• Heterogeneous systems make error detection and recovery even harder, for example, detecting and recovering
from an error in a GPU can involve hundreds of threads simultaneously on the GPU and hundreds of cycles in
drain pipelines to begin recovery.

• Increasing system and algorithm complexity makes improper interaction of separately designed and
implemented components more likely.

• Number of operations (1023 in a week) ensure that system will traverse the tails of the operational probability
distributions.

Thanks to Al Geist, ORNL and Sudip Dosanjh, SNL

What is resilience?

Resilience is an approach to dealing with failures
that focuses on keeping the applications running
• Resilience is concerned with platforms and applications of extreme scale or

complexity where failures are frequent and highly interdependent

• Resilience is dynamic and adaptive, leveraging tools from fault-tolerance with
platform and application feedback to respond to and even preempt failures

• Resilience recognizes that the state of the application may not be easily or
uniquely determined by the state of the platform

• Resilience “embraces failure” by accepting that platform errors will occur and
focusing resources on reducing or eliminating application errors

AMTTI >> SMTBF

• Resilience is dynamic and
adaptable to an evolving
system environment

• Resilience tries to keep the
application out of trouble, but
also tries to help when an
application gets into trouble

• Resilience is a quality of service
agreement between a platform
provider and an application
user: “I cannot promise that
nothing bad will happen if you
run on our systems, but I will
provide necessary and
reasonable safeguards!”

Fault-tolerance vs.
Resilience

Fault-tolerance

Resilience

THIS is resilience!

B-17s - all photos showing planes that successfully returned “home”

. . . but so is this

Tiger II (King Tiger) WWII German Tank

Panzer WWII German Tank

EMBRACE FAILURE

AVOID FAILURE

HPC Reliability - What’s really going on?
• Hard errors

• Crashes
• Soft errors

• Single bit correct, double bit detect
• Double bit correct, triple bit detect

• Degraded modes
• Overheating . . . just slow down this component
• Oops, one of these ALUs doesn’t work, route to another one

• Silent Data Corruption
• The elephant in the room

• Fundamentally, how do these affect the successful running of my application?

What really matters: Application-centric View

• What does an application designer / programmer do to mitigate some of
these failure modes?

• To what extent is my application resistant to:
• Communication corruption?
• Temporary disconnection?
• Transient hardware failures?
• Damaged software?

• The application developer today does not have all the necessary tools to
answer these questions

• What tools would be required?

What is industry best practice?

• Save application state . . . somewhere . . . to try and reduce the affect of
failure so that we can recover

• “Checkpointing” and “Recovery”
• Global shared state to persistent storage

• In-memory checkpointing gaining traction

• Buffering with SSDs / NVRAM

• Application entirely take on this burden themselves
• Hand-coded checkpointing algorithms

• Some libraries exist (notably BLCR) . . . but portable?

• Optimal checkpoint interval?

• For this machine . . . and this code . . . with this current failure characteristic . . .

• Any way you cut it, it is defensive I/O
• And I/O systems can fail too

Exascale will require new levels of reliability across
every level of the system

Why is this so hard? Illustrating the timeline of fault,
error and failure in the execution of an application

Ti
m

e

10

08

12

0402 06

08

1400 12

Start

Stop

00

Fault

Error

Failure

E
rr

o
r

La
te

nc
y

Fa
ul

t
La

te
nc

y

Error
Propagation

Fault
Activation

00

Resilience has a massive scope: five overlapping
thrusts with multiple key areas for focused R&D

!"#"$%$&'()*+",)'$

-)../0,)'$

1')+".2$

3/#/0,)'$

4567".58",)'$
9#",6,0".$

1'".2656$

:"0;5'/$

</"*'5'=$

>?05/'02$

:)3/.5'=$%$

@'0/*#"5'#2$

A7"',B0",)'$

:/#*506$%$

:/"67*/+/'#$

95+7.",)'$%$

>+7.",)'$

C)*+".$

:/#;)36$

9#",6,06$%$

DE,+".$-)'#*).$

9)F$>**)*6$

95./'#$!"#"$

-)**7E,)'$

C"7.#G#)./*"'#$

!/65='$

C"7.#$

&'H/0,)'$
C)*I"*3$

:5=*",)'$%$

4/*5B0",)'$

!/=*"3/3$

:)3/6$

J."K)*+$%$

1EE.50",)'$

:)'5#)*5'=$

1EE.50",)'$%$

J."K)*+$L')M6$

N7'"M./$C53/.5#2$%$

A7".5#2$)($9/*O50/$

P19$N;/)*2$%$

J/*()*+"M5.5#2$

P/6E)'6/$%$P/0)O/*2$

Q/R#G=/'/*",)'$

1*0;5#/0#7*/6$

J*)=*"++5'=$

:)3/.6$

926#/+$9)FI"*/$

%$:533./I"*/$

P19$926#/+6$

N)).6$9#"'3"*36$%$

9#"'3"*3$

C*"+/I)*S$

Theoretical foundations: model failure and quantify
“resource-efficient” computing

0.001 0.01 0.1 1 10
��k�

0.2

0.4

0.6

0.8

1.0
Er�k�

Sp�k� � ts�1�
k ts�k�

Er�k� � ts�k�
tr�k� �

��Ρ�k� �Λ�k�� ��k�22 �
�Λ�k�� 1

k �tr ���k�� tr �k� � 0

���k� � ���k�� Ρ��k� � �Sp���k�
Sp�k� � 0

Enabling Infrastructure: getting harder as the gap
between faults and failures grows

Platform Hardware & Software

System Resilience Layer

Application User

Fault

E
rror

Failure

Availability UnavailabilityPropagationActivation

Correctness InterruptionCorruption

Preemption Recovery
Error latency cannot be

measured in real systems

?

Fault Prediction & Detection: error latency only
measurable by modeling and simulation

• Three questions to be answered with regards to
the error latency:

• Scope: Where is the error manifest?

• Duration: How long did the error lie
undetected?

• Extent: How far did the error propagate?

• Redundancy cannot be executed confidently
without a method of quantifying the spatial and
temporal scope, duration, and extent of an error

• Result of modeling and simulation is the
likelihood that a particular spatial or temporal
domain of the system is uncorrupted

• Tunable Fidelity: Some systems may be able to
sacrifice correctness in a particular domain if they
can exchange if for power or performance

Monitoring & Control: requires the application and
platform interaction through standard interfaces

• Detection plays an important
role in a feedback and control
approach to resilience

• Both platform and application
data are required for failure
detection (and probably for
fault prediction also)

• A resilience layer provides a
common interface between
the platform and application
in a resilient system

• Undetectable errors handled
probabilistically by simulation
and modeling

+

User-centric job
requirements

Job runtime
constraints

Platform and
application

monitoring data

Performability
model

Job control
and resource

allocation

Platform stateApplication
configuration

Resilience layer

Resilience BarrierFault-tolerance Barrier

End-to-End Data Integrity: compared to traditional
fault-tolerance, resilience is a new approach

Error

Exception

Fault

Application

Detect

Activate

Wrong
Answer

Right
Answer

System

Corrupt

Interrupt

Generate

Abort

Exit

Exit

Incomplete

Platform

Fault

Error

Failure

Detect

Activate

Error Propagation

SELSE
Silicon Errors in Logic - System Effects

• 40 year peak in neutron flux (10% higher than the long-term average)

• Cosmic rays offered as Toyota acceleration / braking cause . . . not substantiated

• “The companies most interested in soft errors are those who have lost money because of it”

• Reactive, not proactive

• Soft error rates of latches approaching that of SRAM

• Devices are being placed too closely by the routing algorithms. Signals are “bleeding” into each other causing
“noise” and latches to flip

• Moving to lead-free solder is helping with alpha particle scattering (this is debated)

• Aging, gate oxide degradation, and metal migration

• Soft error rates for SRAM back on the rise as we shrink from 60nm to 45nm

• For each 10 millivolt decrease in power supply voltage expect a 30% increase in soft error rate

• Multi-bit flips are becoming more prevalent

• Soft error community targeting a 10% performance overhead for dealing with soft errors - time to integrate those
into your performance predictions!

• “People are leveraging power for reliability and they are really in for a shock”

Many open research questions . . .
• Accurate fault prediction

• Improved error detection

• Established mapping between platform and application errors

• What IS the state of an application?

• How can we tell if an application “succeeds”?

• Reduction of recovery and migration latencies

• Preemption instead of recovery

• Standards, metrics and data

• What is the right amount of data to log? What data?

• Where can we use replication cost-effectively?

• Resilience benchmark for new systems . . . and existing systems

• How to decide which software component handles a detected problem?

• Can tightly coupled numerical simulations be converted to transactional model?

• Where can we use Hadoop?

• Is checkpointing “dead”?

• In what ways can we take advantage of non-volatile memory?

• . . . just to name a few!

Welcome to FTXS 2010!
Questions?

